
RAS/5/070: Developing Bioenergy Crops to optimize Marginal Land Productivity through Mutation Breeding and Related Techniques (RCA)

> Md. Humayun Kabir Institute of Food and Radiation Biology Bangladesh Atomic Energy Commission Email: mithu_my@yahoo.com

Sub title: Improvement of Sugarcane Cultivar Using Mutation Breeding and In Vitro Technique for high yield and abiotic stress tolerance (Soil-water-nutrient management)

Global Position

Bangladesh

- 24° N Latitude and 90° E Longitude
- Area: 147000 sq. km.
- Population: 160 million
- Population density: 1000 per sq km

Topography and Climate

 Terrain: Mostly flat alluvial plain, hilly & costal region in Southeast part, 20% costal region, 8% terrace and hilly region

 Climate: Sub-tropical; hot summer (March to June) and humid rainy monsoon (July to October) with temp. averaging 32°C and mild winter (Nov. to Feb.) with temp. averaging 14°C

• Rainfall: Average 1525 mm.

Bangladesh Agriculture

- •Marginal Land: Any land with low fertility
- •Cultivable land: 8 million hectares
- •Current fallow land: 0.469m hectares
- •Sugarcane cultivated: 0.14 million ha
- •Annual Sugarcane Production: 5.0m MT
- •Annual Sugar production: 0.21m MT
- •Annual demand: 2.4m MT
- Isd 26 only the mutant variety so far

- Cropping intensity 179%
- Irrigated land 56%
- Surface water:21% groundwater:79%
- Land-man ratio: .06 ha
- Mainly subsistence farming
- Inadequate agro-processing
- Non-mechanized farming
- Fragmented land/plots
- Dependence largely on nature

Objectives

➤To evaluate the physicochemical characters of soil for better crop management

To observe the potentiality of different levels of N fertilizer (urea) on yield and yield contributing characters

Sugarcane & it's by-product

- Sugarcane is one of the most important foodcum cash crop in Bangladesh and 15 sugar mills are now in operations for only sugar production except Keru & Co. Ltd.
- Molasses and Sugarbagasse are byproduct of sugar industry. Molasses contains 50-55% concentration of sugar which yielded alkohol (energy) by 72 hrs. fermentation process.
- 75% of energy supply in the country is provided by indigenous natural gas & 25% imported oil.

- Rapid depletion of coal, gas and crude oil reservoir enforced the study of alternative fuel and such types are biofuels i.e.; bioethanol
- Ethanol can be used as a pure or blended with gasoline for vehicles
- At present sugarcane getting tremendous attention due to its versatile use
- It's by product press mud in combination with microorganism are also used as a organic manure in the country

Fig. Past 5 years sugarcane cultivation in Acres and yield

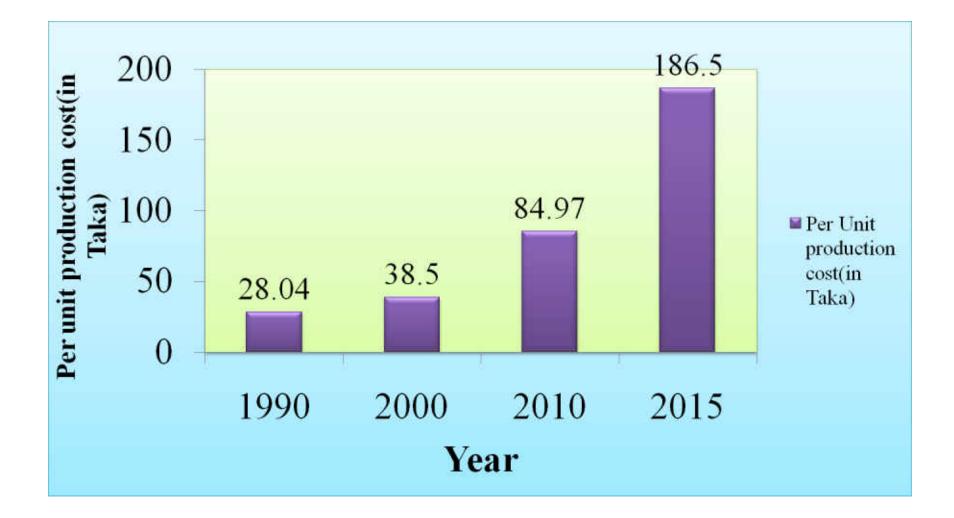


Fig. Per unit production cost of sugar from sugarcane

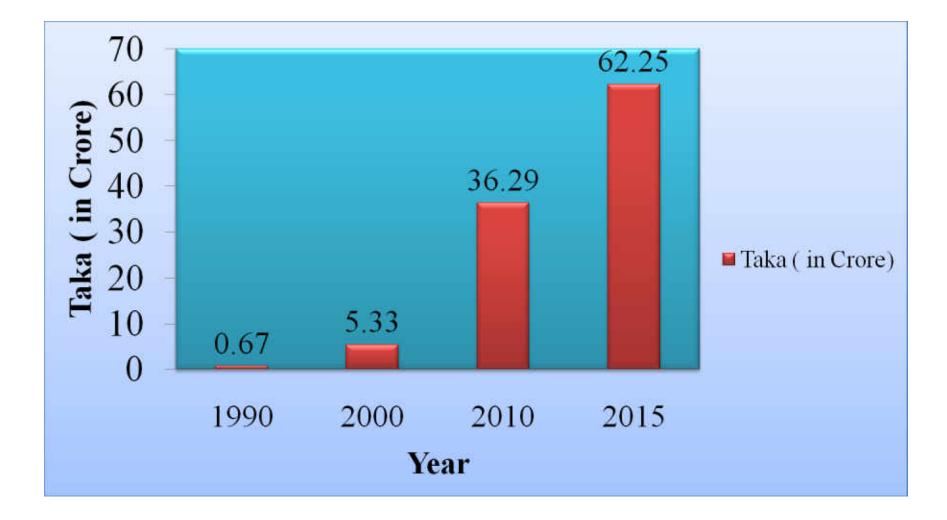


Fig. Profit from sugarcane by-product after harvesting sugar

Soil Status of Bangladesh

Soil fertility status-

- -Moderate to low
- -Organic matter content below

2%

 Nitrogen, Phosphorus,
Potassium and Sulphur content also below the int.standard

Annually a big amount of soil nutrient removed due to cultivation of HYV and soil health was affected

Major Fertilizer used for Sugarcane Production

Urea

- Triple Super Phosphate (TSP)
- Muriate of potash (MOP)

Trends of fertilizer use showed highest for nitrogen fertilizer

Field Operation

- Experimental Design-RCBD
- Replication-3
- Plot size-5mX2m
- Plant spacing-33cmX100cm
- Fertilization-N fertilizer (urea) applied in 3 splits
- Irrigation done-Dry-wet method 21 dys interval & when needed and using porous cup

Laboratory Methods

Soil pH: 1:2.5 pH Meter OM: Walkley and Black Total N: Kjeldahl Available P: Bray And Kartz (pH<7) Available K : Flame Photometer Soil Texture: Hydrometer (NRS Soils-USDA) Available S: Turbidimetrically by Spectrophotometer Sodium: Flame Photometer Calcium: Atomic Absorption Spectrophotometer(AAS)

Physical properties of soil

Sample ID	Depth (cm)	pН	Particle	Textural		
			Sand	Silt	Clay	Class
B1	0-15	6.18	54	14	32	SCL
	15-30	6.15	51	16	33	
	30-45	6.12	50	17	33	
B2	0-15	6.09	56	19	25	SCL
	15-30	6.05	54	20	26	
	30-45	603	53	19	28	
B3	0-15	6.19	52	21	27	SCL
	15-30	6.18	51	20	29	
	30-45	6.16	51	19	30	
B4	0-15	6.03	54	19	27	SCL
	15-30	5.99	53	19	28	
	30-45	5.95	53	18	29	
B5	0-15	5.98	55	21	24	SCL
	15-30	5.94	53	22	25	
	30-45	5.93	50	23	27	

*SCL- Sandy Clay Loam

Typical Contents of some essential elements in soil

Composite	Organic	Organic	Total	Phosphorus	Potassium	Sulphur	Calcium	Sodium
Sample	Carbon	matter	Nitrogen	ppm	ppm	ppm	ppm	ppm
	(%)	(%)	(%)					
B1	0.58	0.96	0.22	50.95(A)	246.33(A)	169.88(A)	486.10	182.52
				203.8(T)	825.32(T)	679.52(T)		
B2	0.52	0.95	0.24	48.83(A)	255.36(A)	161.87(A)	517.09	189.25
				185.32(T)	901.44(T)	567.48(T)		
B3	0.56	1.02	0.23	44.31(A)	247.57(A)	156.04(A)	490.88	192.21
				177.24(T)	910.28(T)	554.16(T)		
B4	0.61	1.01	0.25	49.13(A)	240.39(A)	158.38(A)	618.93	201.47
				186.52(T)	961.56(T)	577.52(T)		
B5	0.63	1.04	0.21	55.12(A)	263.08(A)	165.88(A)	578.90	204.35
				220.32(T)	1002.32(T)	693.52(T)		
Typical	2.0%	3.44%	0.20%	400 (T)	1800(T)	433(T)	20000(T)	11000(T)
content								
(Mean)								
Range	0.7-5.0%	1.2-8.6%	0.002-2.5%	20-6000	50-79000	3-320000	100-	50-100000
							320000	

Main effect of nitrogen fertilizer (urea) on yield and yield contributing parameters of sugarcane variety china

Treatment (kg/ha)	%Germination (Count 1 month)	No. of tiller (X10 ³ /ha)	No. of millable cane (X10 ³ /ha)	Stalk length (cm)	Stalk girth (cm)	Unit stalk Weight (kg)	Cane yield (t/ha)	%Brix
N ₀	63.7	151.33	109.50	180.50	3.0	0.48	89.76	15
N ₁	67.3	190.10	119.90	201.77	4.0	0.65	107.35	16
N_2	77.9	215.80	177.33	210.99	4.5	0.73	114.50	16
N ₃	88.6	290.50	210.23	242.33	5.0	0.89	127.33	16
N ₄	62.5	220.11	140.88	197.88	4.1	0.79	92.23	14.5

 N_0 =Urea 0 + TSP 205 + MOP 200, N_1 =Urea 90 + TSP 205 + MOP 200, N_2 = Urea180 + TSP 205 + MOP 200, N_3 =Urea 270 + TSP 205 + MOP 200, N_4 =Urea 360 + TSP 205 + MOP 200

Management practices in sugarcane field

M1V4 population in the field

M1V3 population in the field

New technology & Challenges

- To conduct N-15 experiment with legume crop and Data analysis
- To improve soil health by crop rotation, nutrient & water management

Future plan

• To conduct N-15 experiment with legume crop at the upcoming rabi season (winter season) October '17

EBD

EBD

